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Abstract
The problem of grounding language in vision is in-
creasingly attracting scholarly efforts. As of now,
however, most of the approaches have been lim-
ited to word embeddings, which are not capable of
handling polysemous words. This is mainly due to
the limited coverage of the available semantically-
annotated datasets, hence forcing research to rely
on alternative technologies (i.e., image search en-
gines). To address this issue, we introduce EViL-
BERT, an approach which is able to perform im-
age classification over an open set of concepts, both
concrete and non-concrete. Our approach is based
on the recently introduced Vision-Language Pre-
training (VLP) model, and builds upon a manually-
annotated dataset of concept-image pairs. We use
our technique to clean up the image-to-concept
mapping that is provided within a multilingual
knowledge base, resulting in over 258,000 images
associated with 42,500 concepts. We show that our
VLP-based model can be used to create multimodal
sense embeddings starting from our automatically-
created dataset. In turn, we also show that these
multimodal embeddings improve the performance
of a Word Sense Disambiguation architecture over
a strong unimodal baseline. We release code,
dataset and embeddings at http://babelpic.org.

1 Introduction
In recent years, there has been a surge of interest in learn-
ing representations of natural language that are grounded in
visual perception, i.e., that are mapped to the external real-
ity through image data. This research direction represents a
promising step towards realising human-like language learn-
ing, and has its main focus in the integration of visual and lan-
guage knowledge, grounding words and sentences into their
visual representation [Kiros et al., 2018]. This growing inter-
est is also due to evidence that many concepts1 are grounded
in perception [Barsalou and Wiemer-Hastings, 2005].

1Unless further specification is provided, we use the terms con-
cept, sense and synset (i.e., the representation of concepts in the
WordNet [Miller, 1995] computational lexicon) interchangeably.

The usefulness of perceptual information has already been
demonstrated in several works (e.g., [Silberer and Lapata,
2014; Kiela et al., 2014]), showing that multimodal sys-
tems outperform unimodal language-based models in many
semantic Natural Language Processing (NLP) tasks, such as
concept categorization and modelling similarity [Hill and Ko-
rhonen, 2014]. Multimodal embeddings can also be exploited
to improve the performances of unimodal vision-based mod-
els. For instance, asking object detection systems to predict
embeddings instead of classes enables zero-shot classification
of unseen objects [Frome et al., 2013]. Moreover, many artifi-
cial intelligence applications involve more than one modality,
highlighting the importance of learning from diverse infor-
mation sources.

Despite the growing interest, multimodal representation
learning still remains a challenging problem. Most works on
the topic focus on word-level embeddings, mainly due to the
lack of a wide-coverage dataset illustrating concepts with im-
ages. For instance, abstract concepts are rarely included in
computer vision datasets. As a result, the most comprehen-
sive source of grounding information is search engines, which
can only provide a mapping from surface representations (i.e.,
terms), not concepts. By using search engines, then, it is not
clear how to handle polysemous items such as HACK, which
can be used in either a computer tampering or cutting sense.

In this paper, we introduce Embedding Vision and Lan-
guage with BERT2 (EViLBERT), a BERT-based approach
for learning task-agnostic multimodal sense embeddings.
Our work is built on top of the recently introduced Vision-
Language Pre-training (VLP) model [Zhou et al., 2020], a
system which achieves state-of-the-art results on language-
vision tasks such as image captioning and Visual Question
Answering (VQA). To produce the embeddings, as a wide-
coverage mapping from images to non-concrete concepts is
not readily available, we build upon BabelPic [Calabrese
et al., 2020] using an automatic technique for the verifica-
tion of synset-image associations. BabelPic is a recently re-
leased dataset which includes manually annotated concept-
image pairs with a focus on non-concrete concepts, and it is
also linked to popular Lexical Knowledge Bases (LKB) like
WordNet [Miller, 1995] and BabelNet [Navigli and Ponzetto,

2Pre-training of Deep Bidirectional Transformers [Devlin et al.,
2019]
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2012]. As a result, our automatic expansion produces a large
mapping of around 258, 000 images to over 42, 500 concepts.

We utilize the VLP model to create multimodal sense em-
beddings from this extended resource. Specifically, we com-
pute sense embeddings as centroids of VLP hidden states,
feeding the model with image-definition pairs from the au-
tomatically expanded resource.

To demonstrate the usefulness of our multimodal sense em-
beddings, we show how better representations improve the
subsequent learning process in the Word Sense Disambigua-
tion (WSD) task [Navigli, 2009]. Our experiments in WSD
show that multimodal sense embeddings, computed through
our task-agnostic approach, achieve better performances than
task-specific unimodal (i.e., textual) embeddings.

To summarise, our contributions are threefold:
• We create a large dataset with a multimodal system for

the verification of candidate image-concept pairs. We
show that our methodology is reliable in both concrete
and abstract domains.
• We introduce EViLBERT, a VLP-based approach for

learning task-agnostic multimodal sense embeddings.
• We demonstrate the effectiveness of EViLBERT sense

embeddings by employing them within a WSD architec-
ture, improving over a competitive baseline.

2 Related Work
To the best of our knowledge, no multimodal sense embed-
dings exist which cover a wide range of nominal and verbal
concepts. There are, however, several works that tie images
to words (which are often polysemous) instead of concepts.
For example, in the Deep Visual-Semantic Embedding model
[Frome et al., 2013, DeViSE] word embeddings and image
embeddings are mapped to a common space by maximis-
ing the similarity between them, enabling zero-shot object
recognition. However, because of the use of word embed-
dings, the representations on the text side conflate multiple
meanings of polysemous items. Hill et al. [2014] proposed a
generalisation of the Skipgram model [Mikolov et al., 2013]
in order to learn multimodal representations of both abstract
and concrete concepts. Nonetheless, concept representations
are learned through cooccurrence of lexicalizations, i.e., of
words, and are not linked to any LKB. In another approach,
Picturebook [Kiros et al., 2018], concepts are absent alto-
gether. Image embeddings are created by extracting features
from the top-k images that are returned by Google image
search for each query word. Picturebook is restricted to the
vocabulary of the word embeddings.

In addition to the problem of using words instead of con-
cepts, it is often the case that vectors are not really learned in
a multimodal way, but are the result of a mapping or shallow
combination of information from single modalities. This is
the case for Picturebook embeddings, in which the feature ex-
tractor exclusively takes images as input. Word embeddings
are only integrated with a task-dependent gating mechanism,
which enables the downstream model to select whether the
image or language modality is more important. In the work
of Hill et al. [2014] only information from object cooccur-
rences in visual data, but no actual image, is used.

Previous works have often not tackled joint multimodal-
ity and, as pointed out by Collell and Moens [2018], this
represents a major weakness because they have to resort to
mapping independently learned unimodal vectors to either
another modality, or a shared embedding space. This results
in the fact that, contrary to what is desirable, the neighbor-
hood structure of the mapped vectors does not resemble that
of the target vectors.

One promising way to produce deeply multimodal repre-
sentations is that of extending language model pre-training,
a technique which has proven to be immensely success-
ful in NLP tasks. In fact, many multimodal extensions of
BERT, currently the most popular language modeling archi-
tecture, have been released recently (e.g., VisualBERT [Li et
al., 2019], ViLBERT [Lu et al., 2019], LXMERT [Tan and
Bansal, 2019], VLP [Zhou et al., 2020]) which achieve state-
of-the-art results in many language-vision tasks.

In our approach, we address both the issues highlighted
above, i.e., that of 1) grounding in visual perception concepts
as encoded in an LKB, instead of words, and that of 2) embed-
ding language and vision jointly. To reach our goals, we ex-
ploit the transfer learning capabilities of one of the aforemen-
tioned multimodal systems, i.e., VLP, by reducing the task of
multimodal concept embedding to VQA. In what follows, we
elaborate on the details of our contribution.

3 Our Approach
The core idea of this work is to create sense-level embed-
dings starting from both textual (i.e., the gloss of the tar-
get concept) and image data (i.e., images illustrating the tar-
get concept). To reach this goal, we need a dataset includ-
ing wide-coverage concept-image associations which is also
linked to an LKB (i.e., WordNet). Unfortunately, existing
wide-coverage repositories like ImageNet [Deng et al., 2009],
COCO [Lin et al., 2014], Flickr30kEntities [Plummer et al.,
2015] and Open Images [Kuznetsova et al., 2020] are ei-
ther limited to concepts denoting concrete, tangible things,
or not linked to an LKB. To address this issue we start from
BabelPic [Calabrese et al., 2020], a hand-labeled dataset of
concept-image associations, and use an automatic technique
to extend its coverage to previously unseen concepts. Once
the dataset has been created, we learn our multimodal repre-
sentations by exploiting VLP, a recent BERT-based system
for language-vision pre-training. Specifically, multimodal
sense embeddings are obtained by aggregating the vectors
resulting from the definition and the top-k images for each
concept. All these steps are detailed below.

3.1 Gold Dataset
As more fully discussed in Hill et al. [2014], differences be-
tween processing of abstract and concrete concepts suggest
that models trained for concrete concept learning may not
necessarily work in the general case. However, since knowl-
edge about tangible objects is already contained within pre-
trained object detection systems, we assume that the forego-
ing objection does not hold when, vice versa, a system that
is trained for abstract concept learning is used on concrete
concepts. Driven by this hypothesis, we employ as seed Ba-
belPic [Calabrese et al., 2020], which has an explicit focus
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Figure 1: We enable image classification over an open set of concepts by reducing the task to VQA. Examples are taken from our gold dataset.

on non-concrete nominal and verbal concepts. BabelPic was
built by selecting a subset of the abstract concepts contained
in WordNet (i.e., any nominal synset descending from feel-
ing.n.01 or event.n.01 and any verbal synset belonging to the
verb.competition, verb.motion and verb.social lexicographer
files). Note that, in order to guarantee the non-concreteness of
such concepts, synsets descending from physical entity.n.01,
shape.n.02 or color.n.01 were discarded.

For each selected concept, 15 candidate images were gath-
ered from Wikipedia. This was possible thanks to the au-
tomatic linking between WordNet and Wikipedia available
through BabelNet [Navigli and Ponzetto, 2012], a large mul-
tilingual Lexical Knowledge Base. The quality of the dataset
was guaranteed by filtering out any image where transparency
was used, or where half of the pixels were white, as these
were not likely to be relevant. Moreover, remaining noisy
images were discarded during the manual validation phase,
when each synset-image pair was hand-checked through an
ad hoc graphical interface. As a result, the gold dataset in-
cludes 2,733 synsets and 14,931 images.

3.2 Silver Dataset
The creation of the embeddings requires the availability of
a wide-coverage multimodal dataset. However, the time de-
mands of the manual validation process put a serious limit on
the feasibility of the task. To address this issue and create a
larger dataset, we develop an approach for the automatic veri-
fication of synset-image associations by defining the problem
as a VQA task with yes/no answers. In particular, we specify
a question template as follows:

“Does the image depict l (g)?”

where l is the lemma of the first sense in WordNet of the target
synset and g is the synset gloss, i.e., its textual definition. We
instantiate our template for each synset-image pair of interest,
thus obtaining a textual question for each instance. Figure 1
shows two examples of the template, one with a positive and
one with a negative concept-image pair.

The system that we use to address the above VQA problem
is the fine-tuned VLP model. Despite the fact that LXMERT
achieves a slightly higher score on yes/no questions on the
VQA 2.0 dataset [Goyal et al., 2017], our preference goes to
the VLP system since it is pre-trained on Conceptual Cap-
tions (CC), a wider and more general dataset including more
than 3M image-caption pairs. More specifically, VLP is pre-
trained using two unsupervised vision-language tasks: bidi-
rectional and sequence-to-sequence masked language predic-
tion. Input images are preprocessed using Faster R-CNN [Ren

et al., 2015] pre-trained on Visual Genome [Krishna et al.,
2017; Anderson et al., 2018], hence extracting 100 object re-
gions per image. In order to obtain class-aware region em-
beddings, region-level features are combined with the corre-
sponding probability of each object label and with other re-
gion geometric information. The BERT-based architecture
is thus fed the concatenation of gloss subword embeddings
and class-aware region embeddings. During the fine-tuning
phase, the hidden state of the encoder is given as input to a
Multi-Layer Perceptron (MLP) in order to predict the corre-
sponding answer. Here, we use VLP fine-tuned on VQA 2.0
and our gold dataset.

As we discuss in Section 4.1, the experiments demonstrate
that our approach is resilient in the zero-shot classification
of both abstract and concrete concepts, thus enabling veri-
fication across the whole sense inventory. We select all the
WordNet synsets having at least one image in BabelNet, and,
similarly to the gold dataset creation process, collect the first
15 corresponding images for each of them. Noisy images are
discarded with the same heuristics used for the gold dataset.
The 455,070 image-synset pairs obtained, corresponding to
44,868 different concepts, are then automatically validated
using our VLP-based approach. As a result, our silver dataset
includes 42,579 synsets and 257,499 images.

3.3 Multimodal Sense Embeddings
Having addressed the lack of a wide-coverage dataset, we
aim to learn a dense representation for each concept by ex-
ploiting both textual (i.e., the gloss) and image data. To this
end, we introduce EViLBERT, a new approach based on the
general VLP architecture (i.e., without the MLP on top). Our
approach involves the creation of static multimodal sense em-
beddings through the use of the context-dependent activations
of the hidden layers of a pre-trained architecture. For the tex-
tual input, we feed the model again with a sentence including
both the main lemma and the gloss of the target synset. As
regards visual data, instead, we select the top-k images asso-
ciated with the target concept (i.e., the first 5 images in the
BabelNet ordering that are also accepted by our system) and
we input them one at a time. By doing so we obtain at most 5
input pairs for each synset.

Given a concept-image pair, we generate a candidate em-
bedding starting from the hidden states of the BERT-based
VLP encoder. More specifically, we compute a weighted av-
erage of the hidden states at the various timesteps of the input
sequence corresponding to the gloss. Note that this time step
choice does not imply discarding all the visual information,
since the corresponding hidden states have been calculated
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starting from the whole multimodal input sequence.
We compute an attention vector a ∈ RT by summing the

attention scores of all the heads of a Transformer layer for
all the queries, and then averaging over the last N layers.
After softmax-normalizing a, we obtain a vector associating
each time step of the input sequence with an attention score.
Specifically, a candidate embedding e is computed as:

e =

Te∑
t=Ts

(
N∑

n=0

Hn,t

)
· at

where Ts and Te are, respectively, the first and the last time
steps in the sequence corresponding to textual input and H is
the three-dimensional tensor storing the hidden states of the
last N (i.e., 4) layers of the BERT encoder. The multimodal
embedding for a synset s is finally obtained as the centroid of
the candidate embeddings e(i), i ∈ [0, k), computed from the
k instances associated with s.

We note that EViLBERT is similar to LMMS [Loureiro
and Jorge, 2019], in which sense embeddings are built by
feeding sense-tagged sequences and glosses to pre-trained
BERT Large, but, crucially, differs in that we make joint use
of textual and visual information, and do not need a sense-
annotated corpus.

Coverage Extension
Given the limited number of concepts in the expanded silver
dataset (45,312 out of a total of 117,659 WordNet synsets),
we use the WordNet relational structure to assign to concepts
with no image in our dataset, whenever possible, the embed-
ding of the closest ancestor in our dataset. Thanks to this
heuristic, we can compute embeddings for 80,414 concepts.

4 Experiments
Our experiments are organised in two main blocks. The first
focuses on the evaluation of our proposed approach for the
automatic verification of concept-image associations in both
the concrete and non-concrete domains (Section 4.1). The
second set of experiments, instead, assesses the effectiveness
of our multimodal concept embeddings by evaluating them in
the Word Sense Disambiguation task (Section 4.2).

4.1 Verification of Concept-Image Associations
As we recall, we start from BabelPic and use VLP to create
a wide-coverage silver dataset. In order to do so, we refine
the weights of the model fine-tuned on VQA 2.0. Training
is performed by feeding VLP either a true example, i.e., a
concept-image pair from the seed dataset, or a negative sam-
ple, which is created as described below.

Negative Samples
Our dataset can be formally characterised as the set D, with
each member being a pair 〈c, i〉, where c is a concept in Word-
Net and i is some image. For each concept c, we can pro-
duce negative samples by randomly selecting some other i′
s.t. 〈c′, i′〉 ∈ D and c 6= c′. However, by defining the task as
a validation of synset-image pairs images are allowed to be
associated with multiple concepts and, thus, we need to en-
sure that i′ does not depict c as well. A strategy to generate

Split S(%) P(%) U(%)
Training 10.20 1.95 37.85

Validation 10.18 1.98 37.84

Test 10.21 1.94 37.83

Zero-Shot 11.55 2.19 36.25

Table 1: Distribution of instances labelled as sibling (S), polysemous
(P) and unrelated (U) in our dataset’s splits.

Split N C I
Training 23,891 2,618 13,311

Validation 2,986 1,442 2,740

Test 2,987 1,416 2,715

Zero-Shot 502 43 490

Table 2: Number of instances (N), concepts (C) and images (I) in
our dataset’s splits.

challenging negative instances is to look for sibling concepts,
i.e., synsets that are connected to some concept c′′ by the hy-
pernymy relation (e.g., MARATHON and FUN RUN). Harder
instances (namely, polysemous) can be obtained by selecting
concepts containing at least one common lexicalization (e.g.,
the synsets of swim.v.01 and swim.v.02). Finally, unrelated
instances can be created by looking for synsets which are not
connected to each other (e.g., GLADFULNESS and RACING).

For each concept c, we define as many negative samples
as the number of available hand-annotated associations for
c. Consequently, we obtain a dataset which is perfectly bal-
anced between the two output labels. We perform the split-
ting of the dataset according to the 80%/10%/10% rule, hence
defining training, validation and test sets. The relations used
to define the negative examples are proportionally distributed
between the splits (see Table 1), and the same holds for the
output classes. Moreover, we force both the validation and
test sets to also contain instances involving concepts that are
not present in the training set. This is done in order to eval-
uate the system’s capability to handle new concepts, and we
refer to the subset of the test set given by these instances as
the zero-shot test. More statistics can be found in Table 2.

Hyperparameters
When training the VLP architecture on our gold dataset, we
keep the same setting as in the original paper. That is, we set
the number of both hidden layers and attention heads of the
BERT encoder to 12. We train the model for 20 epochs with
learning rate of 2·10−5 and a dropout rate of 0.1, selecting the
weights of the best epoch, i.e. the one achieving the highest
F1 score on the validation set.

Model Selection
In the following we use the abbreviations P-VLP and F-VLP
to refer, respectively, to the VLP model, first, pre-trained on
CC only and, second, further fine-tuned for the VQA task
on the VQA 2.0 dataset. Our experiments demonstrate that
both systems are reliable on our task, achieving precision and
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Model Validation Test Zero-Shot
P F1 P F1 P F1

P-VLP 71.93 78.97 72.48 79.33 71.43 77.90

F-VLP 76.14 77.50 75.94 75.99 77.67 71.67

Table 3: Precision and F1 scores (%) on the verification of concept-
image associations in our dataset.

F1 scores that are over 70% on all the splits (see Table 3).
However, in a common use case scenario it is more important
to classify as correct only valid concept-image pairs rather
than all valid concept-image pairs. In other words, we prefer
precision over recall. Consequently, the F-VLP model proves
to be the most suitable for the task.

Can We Learn What New Abstract Concepts Look Like?
With EViLBERT we aim to develop a system capable of clas-
sifying images over an open set of concepts. Therefore, it is
of great interest to assess the performance of the model in a
zero-shot scenario (i.e., where the target concept is new to the
system). Results related to this experiment are reported in the
last column of Table 3, and demonstrate that both the P-VLP
and F-VLP models are robust to zero-shot classification. In
fact, the scores achieved are comparable to the performances
obtained on the other splits. Specifically, the F-VLP system
is able to verify the associations between new concepts and
images with 77.67% precision, hence enabling the automatic
extension of our dataset to any other non-concrete concept.

Can We Learn Concreteness from Abstraction?
The building process of our gold dataset was based on the
hypothesis that a system which is able to classify abstract
concepts is also able to deal with concrete ones. This idea
is supported by the fact that pre-trained object detection sys-
tems have already acquired knowledge about tangible things.
In this paragraph we explore the reliability of our model on
the annotation of concrete concepts. To this end, we create
a new zero-shot test split starting from 500 random image-
concept pairs in ImageNet. Given the nature of ImageNet,
all the selected concepts are concrete. We define the nega-
tive instances (i.e., the irrelevant concept-image pairs) by as-
sociating concepts with random images from the rest of our
ImageNet sample. The result is a test set which is perfectly
balanced between the two output classes. Table 4 shows the
performances achieved by the F-VLP model on this zero-shot
test. Our system obtains a precision score of 76.03%, demon-
strating that it is able to classify images over concrete con-
cepts without any drop in performance. Interestingly, many
false positives are due to concept-image pairs which, despite
being associated at random, are still plausible and, hence,
hard to classify (see, for instance, Figure 2). The F1 score
is even higher than the one registered on BabelPic’s zero-shot
test, hence validating our initial hypothesis.

4.2 Word Sense Disambiguation
To test whether the use of both visual and language modali-
ties in EViLBERT results in better embeddings than the uni-
modal counterpart, we experiment on the use of our vectors

Model Precision F1
F-VLP 76.03 76.86

Table 4: Precision and F1 scores (%) of the zero-shot verification of
concrete concept-image associations on the ImageNet sample.

in a competitive WSD architecture.

Comparison Systems
We include as comparison systems the variants of the multi-
modal sense embeddings obtained through the use of EViL-
BERT at different stages of the fine-tuning procedure, namely
EViLBERT-CC, EViLBERT-VQA and EViLBERT-FT. All
these models have been pre-trained on CC, with the latter
two being further fine-tuned on the VQA 2.0 dataset. In con-
trast to EViLBERT-VQA, however, EViLBERT-FT has also
been trained on BabelPic gold. Results are reported both
with and without the coverage extension. Additionally, we
compare the performance of our systems with LMMS vec-
tors [Loureiro and Jorge, 2019], which are produced with an
approach that is similar to ours, but only uses textual infor-
mation. In order to set a level playing field, we normalize the
embeddings (both ours and LMMS’s) and reduce the dimen-
sions to H = 512 with a standard truncated SVD. The LMMS
sense-level vectors are aggregated into synset embeddings by
mean pooling. As regards LMMS, we also report results af-
ter reducing the coverage to the same level as EViLBERT’s
by discarding embeddings of concepts that are not in the lat-
ter. For completeness, we include the results of the current
state of the art in WSD among models trained on SemCor,
i.e., GlossBERT [Huang et al., 2019].

Architecture
Our WSD system encodes words to be classified using a
frozen BERT Large cased model. More specifically, for each
subword that makes up the target, we compute a contextual
vector by taking the sum of the last four corresponding hidden
states. The vector for the target is just the centroid of the vec-
tors of its subwords. The target contextual vector produced
is given as input to a simple feed-forward classifier, which
emits a probability distribution over all the concepts in the in-
ventory, i.e., WordNet. When performing inference, for each
target item, we take as prediction the synset with the highest
probability only among those possible for the given target.
Concept embeddings are used to initialize the correspond-
ing rows in the output embeddings matrix O ∈ R|V |×|H|
[Bevilacqua and Navigli, 2020]. In the baseline model, O
is all randomly initialized. During training we update all the
weights in O as usual. We train the system on the SemCor
corpus for a maximum of 10 epochs, with the Adam opti-
mizer and a learning rate of 10−4, feeding the input in batches
of 250 instances. We use SemEval-2015 [Moro and Navigli,
2015] as development set.

Results
Table 5 reports the results of the WSD experiments. We
evaluate on the concatenation of all the standard evaluation
datasets (ALL*) available in the framework of Raganato et
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Figure 2: Unrelated concept-image pairs that have been wrongly classified by our system. Examples are taken from our ImageNet’s sample.

Embedding ALL* ALL Cov.-WN Cov.-ALL*
Baseline 73.2 73.6 0.0 0.0

L
im

ite
d

LMMS 1024 73.6 73.7 38.5 28.9
LMMS 2048 73.6 73.7 38.5 28.9
EViLBERT (CC) 73.4 73.8 38.5 28.9
EViLBERT (VQA) 73.7 73.9 38.5 28.9
EViLBERT (FT) 73.1† 73.4 38.5 28.9

E
xt

en
de

d LMMS 1024 74.1† 74.3 68.3 53.6
LMMS 2048 74.0 74.2 68.3 53.6
EViLBERT (CC) 74.0 74.2 68.3 53.6
EViLBERT (VQA) 75.0 75.1 68.3 53.6
EViLBERT (FT) 73.4 73.7 68.3 53.6

Fu
ll LMMS 1024 75.0 75.2 100.0 100.0

LMMS 2048 75.5 75.7 100.0 100.0

GlossBERT 76.2 77.0 - -

Table 5: F1 scores in the WSD evaluation. The row groups contain
(top to bottom): baseline; results with coverage limited to EViL-
BERT; results with coverage limited to extended EViLBERT; results
with full coverage; state of the art. Coverage (Cov.) as % of Word-
Net synsets and instances in ALL*. †: highest F1 that is statistically
different from the row group best (McNemar’s test, p < 0.05).

al. [2017], with the exception of SemEval-2015, our develop-
ment set. To make the results easily comparable with other
approaches in the literature, we also report results on the con-
catenation of all datasets in the framework (ALL). Experi-
ments demonstrated that our EViLBERT-VQA embeddings
are consistently better than the other multimodal variants.
In particular, despite covering only 28.9% of the instances,
our approach results in a gain of 0.5% over the baseline
F1. When considering the extended EViLBERT the improve-
ment is even more remarkable, outperforming the baseline
by 1.8%. Our multimodal embeddings result in a substan-
tial gain even when comparing with the unimodal LMMS-
based architectures. More specifically, EViLBERT-VQA out-
performs on ALL* the LMMS-based architectures by 0.1%
and 1.0% in, respectively, the limited and extended settings,
even though the latter are built with a larger BERT variant.

5 Conclusions
In this work, we introduced EViLBERT, a new approach
for learning sense embeddings from both language and vi-
sual knowledge. EViLBERT is innovative in being the first
multimodal learning technique which is able to learn task-
agnostic representations for a wide range of concepts instead
of words. Of course, learning multimodal embeddings re-
quires the availability of a wide-coverage dataset illustrating
concepts with images. Unfortunately, existing wide-coverage
repositories are either limited to concrete concepts or not
linked to a Lexical Knowledge Base. While most works in
this field sidestep the issue by exploiting search engines, this
is not an option for us since a methodology of this kind would
not work in the case of polysemous words. To tackle this
point, we created a large resource associating images with a
wide-coverage set of concepts belonging to both the concrete
and non-concrete domains. More specifically, we enabled im-
age classification over an open set of concepts by reducing
the verification of image-concept associations to Visual Ques-
tion Answering. Our model relies on the recently introduced
VLP architecture, and our experiments showed it to be reli-
able on zero-shot classification too. In addition, we described
a strategy for creating effective embeddings from the hidden
states of our VLP-based architecture, and we demonstrated
their efficacy in the Word Sense Disambiguation task. Our
experiments showed that multimodal information improves
the performance of a simple WSD architecture, exceeding
the scores obtained using competitive unimodal alternatives.
EViLBERT is available at http://babelpic.org.
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